Classification-based objective functions
نویسندگان
چکیده
منابع مشابه
Bayesian-based selection of metabolic objective functions
MOTIVATION A critical component of in silico analysis of underdetermined metabolic systems is the identification of the appropriate objective function. A common assumption is that the objective of the cell is to maximize growth. This objective function has been shown to be consistent in a few limited experimental cases, but may not be universally appropriate. Here a method is presented to quant...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Exploring objective climate classification
A three-step climate classification was applied to a spatial domain covering the Hi-malayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal compo-5 nents analysis (PCA) of those variables and k means cluste...
متن کاملA Classification of Lattice-based Trapdoor Functions
A trapdoor function is a one-way function with trapdoor, which is indispensable for getting a preimage of the function. In lattice-based cryptography, trapdoor function plays an important role in constructing the secure cryptographic schemes like identity-based encryption, homomorphic encryption, or homomorphic signature. There are three categories of trapdoor functions as standard trapdoor, lo...
متن کاملSupervised Classification Based on Copula Functions
This paper exposes the research being done about the incorporation of copula functions in supervised classification. It is shown, by means of pixel classification, the advantages that modeling dependencies provides to supervised classification and the benefits of doing it through copula functions which are not limited to linear dependencies. The experiments executed so far, show positive result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2006
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-006-6266-6